# Preparation and characterization of Fe<sup>3+</sup>-doped TiO<sub>2</sub>/diatomite composite

Lu Sun<sup>1,a</sup>, Junxiong Lin<sup>1,b</sup>, Lan Wang<sup>1,c</sup> and Kaixin Song<sup>2,d</sup>

<sup>1</sup>Engineering Research Center for Dyeing and Finishing of Textiles (zhejiang Sci-Tech University), Ministry of Education, Hangzhou 310018, China;

<sup>2</sup>College of electronics information and engineering, Hangzhou Dianzi University, Hangzhou 310018, China

<sup>a</sup>603613512@qq.com, <sup>b</sup>linjunxiong@zstu.edu.cn (Corresponding author),<sup>c</sup>wlan\_cn@yahoo.com.cn, <sup>d</sup>kxsong@hdu.edu.cn

Keywords: Diatomite; TiO<sub>2</sub>; Iron ion doping; Photocatalyst;

**Abstract.**  $Fe^{3+}$ -doped TiO<sub>2</sub>/diatomite composite photocatalyst were prepared by sol-gel method with titanium isopropoxide used as precursor material. The samples were characterized by SEM, XRD, XPS, BET surface area analysis and UV-Vis techniques. The results showed that the optimum concentration of Fe<sup>3+</sup> in the composite catalyst was 0.2wt% when the quantity of TiO<sub>2</sub> loaded on the diatomite was 30.3wt%. Compared with the un-doped photocatalyst, the Fe<sup>3+</sup>-doped sample exhibited red shifts of absorption edge and significant enhancement of light absorption at 400~600 nm.

## Introduction

 $TiO_2$  has been considered as one of the most promising photocatalysts ever since Honda and Fujishima [1] reported its photochemical properties. However,  $TiO_2$  is not thermally stable and loses surface area readily when used as a high surface area powder. On the other hand, both the reaction mechanisms, under either UV or visible irradiation, indicated that preliminary adsorption of organic substrate on the  $TiO_2$  surface exhibited an advantage for high efficient degradation. These have led to a number of attempts to anchor  $TiO_2$  on high surface area supports, such as zeolites, activated carbon and clays, by a variety of chemical or physical methods, e. g., ionized cluster beam deposition, wet chemical methods, chemical vapor deposition and impregnation-desiccation [2]. Recently, one siliceous sedimentary rock, named diatomite, has received attention for its unique combination of physical and chemical properties. It was successfully used as adsorbent to remove various pollutants, and examined as perfect support for TiO<sub>2</sub> to prepare hierarchical structured catalysts [3].

The other disadvantage of TiO<sub>2</sub> is that it can only utilize a relative small part of the solar spectrum (UV light) for photocatalytic oxidation. Doping or combining of TiO<sub>2</sub> with various metal or non-metal ions was reported as a good tool to improve the photocatalytic properties and for enhancement of visible light response [4]. Amongst a variety of transitional metals, iron had been considered to be an appropriate candidate due to the fact that the radius of Fe<sup>3+</sup> (0.79 A) is similar to that of Ti<sup>4+</sup> (0.75 A), so that Fe<sup>3+</sup> can be easily incorporated into the crystal lattice of TiO<sub>2</sub> [5].

Based on the above considerations, we prepared  $Fe^{3+}$ -doped  $TiO_2$ /diatomite photocatalytic materials according to a sol-gel route in which diatomite particle was incorporated into the titanium isopropoxide sol during the course of the sol-gel process. The samples have been characterized by means of XRD, SEM, XPS, BET and UV-Vis technologies, and the optimum concentration of Fe<sup>3+</sup> in the composite catalyst was studied.

## Experimental

**Materials and reagents.** The following reagents were employed to prepare  $TiO_2$ : titanium-(IV)-isopropoxide (97%) as  $TiO_2$  source; hydrochloride acid (37%) as catalyst; Iron(III) nitrate (99%) as dopant source; ethyl alcohol (96%) as solvents. Diatomite was obtained from Sheng county in Zhejiang province of China. The sample was calcined at 500 °C to remove organic impurities before  $TiO_2$  coated.

**Preparation of Fe<sup>3+</sup>-doped TiO2/Diatomite.** 10 mL of titanium isopropoxide was dissolved into 50 mL of anhydrous ethanol (solution A). Solution B consisted of 0.5 mL of HCl, 2 mL of distilled water and Fe(NO<sub>3</sub>)<sub>3</sub>· 9H<sub>2</sub>O in the required stoichiometry. Then solution B was added drop-wise into solution A with stirring magnetically. After the drop, 5g of diatomite was added to the solution. The resultant mixture was stirred at room temperature for 30 min to hydrolysis until the transparent sol was obtained. The sol was then aged for 72 h until the formation of gel. Then dried and ground. At last, the powder was kept for 1 h under 500 °C in the oven.

**Characterization.** Surface morphologies of the samples were investigated using SEM (model SIRION-100, Fei Company, Holland). For the specific surface area and pore size evaluation, nitrogen gas adsorption method was used. N<sub>2</sub> gas adsorption–desorption isotherms were measured at -196 °C using a model Autosorb-1 nitrogen-adsorption apparatus (Quantachrome Corp., USA). The specific surface area,  $S_{\text{BET}}$ , was calculated based on the BET theory. Phases and crystallite sizes of the prepared samples were characterized by XRD technique. XPS data were obtained with an ESCALab220i-XL electron spectrometer from VG Scientific using 300W AlK $\alpha$  radiation. The UV-Vis variations of the solution were analyzed by a Shimadzu UV-2550 spectrophotometer.

#### **Results and discussion**

**SEM analysis.** The diatomite used in this work was in the form of cylindraceous particle with bulk density of 616 g/L and median particle diameter of 10.25  $\mu$ m (Laser particle size). The oxide analysis in our previous study [6] showed that SiO<sub>2</sub> was the main component (67.3%) and the metal oxides (15.4% Al<sub>2</sub>O<sub>3</sub>, 7.07% Fe<sub>2</sub>O<sub>3</sub>, 3.97% K<sub>2</sub>O, 3.87% ZnO, 1.36% TiO<sub>2</sub> and 1.05% CaO) were the minor constituents. Fig. 1 shows the SEM images of diatomite and Fe<sup>3+</sup>-TiO<sub>2</sub>/diatomite. It clearly displayed the cylindrical figure and the special porous texture of diatomite, and the surface was completely modified after TiO<sub>2</sub> loaded. The quantity of TiO<sub>2</sub> loaded on the diatomite surface may mainly depend on the quantity of titanium isopropoxide used in the experiment and the nature of the surface. In this study, the loading on the surface of the diatomite was determined to be approximately 30.3% using the differential weight method.



Fig. 1 SEM images of (a) diatomite and (b)  $Fe^{3+}$ -TiO<sub>2</sub>/diatomite.

**Surface area study.** Highly porous morphologies with improved surface area offer more adsorption sites for the dye molecules and enhance the reaction rate. Hence, determination of the specific surface area is often a prerequisite for studying and interpreting adsorption properties quantitatively [7]. In this work, the pore properties, i.e.,  $S_{\text{BET}}$ , pore volume V, and average pore diameter R, of diatomite and Fe<sup>3+</sup>-doped TiO<sub>2</sub>/diatomite powders were characterized by N<sub>2</sub> adsorption-desorption experiments. The results were listed in Table 1. It can be seen that the BET surface area and pore volume of Fe<sup>3+</sup>-doped TiO<sub>2</sub>/diatomite were higher that that of the initial diatomite. This suggested that the prepared sample could show improved capability in adsorption and photocatalytic degradation. Jia et al [3] have prepared hierarchical porous TiO<sub>2</sub>/diatomite materials by a layer-by-layer (LBL) assembly method, and also obtained a higher BET surface area and pore volume with diatomite.

| I able 1 lexture properties from nitrogen adsorption analysis |                                 |                           |               |
|---------------------------------------------------------------|---------------------------------|---------------------------|---------------|
| Sample                                                        | $S_{\rm BET} ({ m m}^2/{ m g})$ | $V(\text{cm}^3/\text{g})$ | <i>R</i> (nm) |
| Diatomite                                                     | 50.63                           | 0.1296                    | 10.24         |
| Fe <sup>3+</sup> -TiO <sub>2</sub> /diatomite                 | 74.95                           | 0.1540                    | 8.221         |

**XRD analysis.** TiO<sub>2</sub> materials exist in three different crystalline phases: anatase, rutile and brookite. Fig. 2 shows XRD patterns of undoped and Fe<sup>3+</sup>-doped TiO<sub>2</sub>/diatomite. It can be seen that both 0% and 0.2% Fe-doped samples had the anatase phase, and other crystalline phases were not detected. The reason may be that Fe<sup>3+</sup> ions substituted Ti<sup>4+</sup> ions and inserted into the crystal lattice of TiO<sub>2</sub> when the amount of Fe<sup>3+</sup> ions was low, since the radii of Ti<sup>4+</sup> and Fe<sup>3+</sup> ions were similar. When the Fe<sup>3+</sup> dopant percentage were 0.5% and 1.0%, the peaks of anatase phase decreased, while the peaks of rutile and iron oxide increased. Thus, the excess of Fe<sup>3+</sup> dopant in the composite could lead to the phase transformation. It could be concluded from this experiment that almost all of Fe<sup>3+</sup> in 0.2% Fe<sup>3+</sup>-TiO<sub>2</sub>/diatomite were trapped in the crystal lattice of TiO<sub>2</sub>, whereas 0.5% and 1.0% Fe<sup>3+</sup>-TiO<sub>2</sub>/diatomite contained segregated iron oxide in addition to Fe<sup>3+</sup> doped TiO<sub>2</sub>.



Fig. 2 XRD patterns of Fe doped TiO<sub>2</sub>/diatomite. Fig. 3 UV–Vis spectrum of Fe-doped sample.

**UV-Vis analysis.** Fig. 3 displays the UV–Vis absorption spectrum of undoped and Fe<sup>3+</sup>-doped TiO<sub>2</sub> powders. Pure TiO<sub>2</sub> exhibited an absorption edge rising steeply toward the UV region below 400 nm, which could be attributed to the band-gap excitation of anatase (3.2 eV), without absorption in visible region (>400 nm). Compared with the undoped photocatalysts, Fe<sup>3+</sup>-doped TiO<sub>2</sub> samples exhibited red shifts of absorption edge and significant enhancement of light absorption at 400~600 nm, and this enhancement increased as the doped Fe<sup>3+</sup> percentage increased, accompanying with the change of powder color from white to primrose yellow. This result satisfies the aim of the study which was to increase the visible light absorption of Fe<sup>3+</sup>-doped TiO<sub>2</sub>/diatomite powders.

**XPS analysis.** Fig. 4 shows the XPS spectra of  $Fe^{3+}$ -doped TiO<sub>2</sub>/diatomite particles. Peaks of Ti 2p, Si 2p and O 1s were clearly observed for the sample in the wide spectra (Fig. 4a). Weak signals of Fe 2p could only be detected in the partial range of the XPS spectra, and the signals were fluctuant greatly, due to the low doping level, as shown in Fig. 4b. The Ti  $2p_{3/2}$  and Ti  $2p_{1/2}$  spin-orbital splitting photoelectrons for  $Fe^{3+}$ -TiO<sub>2</sub>/diatomite were observed at 458 and 464 eV, respectively, which was consistent with the values of Ti<sup>4+</sup> in the TiO<sub>2</sub> lattices. The comparison between the Ti 2p spectra of undoped TiO<sub>2</sub> and the doped TiO<sub>2</sub>/diatomite (Fig. 4c and 4d) indicated that the latter had small binding energy shifts (the Ti  $2p_{1/2}$  peak had a greater shift than the Ti  $2p_{3/2}$  peak). It might infer that the doped Fe ions might diffuse into TiO<sub>2</sub> lattices to form the Fe-O-Ti bond.



**Fig. 4** XPS spectra of synthesized  $Fe^{3+}$ -TiO<sub>2</sub>/diatomite particles: (a) full range, (b) Fe, (c)  $Fe^{3+}$ -doped Ti and (d) undoped Ti in TiO<sub>2</sub>

### Conclusions

In this paper,  $Fe^{3+}$ -doped TiO<sub>2</sub>/diatomite composite photocatalyst were successfully fabricated and characterized. It showed that the light absorption for the Fe-doped sample moved to a longer wavelength, and the doped Fe ions might diffuse into TiO<sub>2</sub> lattices to form the Fe-O-Ti bond.

### Acknowledgements

This work was financially supported by National Natural Science Foundation of China (51203140), Zhejiang Provincial Natural Science Foundation of China (Y5110173), Zhejiang Provincial Key Innovation Team of China (No. 2010R50038) and Talents Training Foundation of Zhejiang Science and Technology Association.

### References

[1] K. Honda, A. Fujishima: Nature Vol.238 (1972), p 37-38

[2] W. Zhang, L.D. Zou, L.Z. Wang: Appl. Catal. A: Gen. Vol.371 (2009), p 1-9

[3] Y.X. Jia, W. Han, G.X. Xiong, W.S. Yang: J. Colloid Interf. Sci. Vol.323 (2008), p 326-331

[4] H.K. Shon S. Vigneswaran, I. El Saliby, Y. Okour, In S. Kim, J. Cho, H.J. Park, J.B. Kim and J.-H.

Kim: Desalin. Water Treat. Vol.15 (2010), p 214-221

[5] Z. Zhang, C. Wang, R. Zakaria, J.Y. Ying: J. Phys. Chem. B Vol.102 (1998), p 10871-10878

[6] J. X. Lin, S. L. Zhan, M. H. Fang, X. Q. Qian: J. Porous Mater. Vol.14 (2007), p 449-455

[7] S. Bharathi, D. Nataraj, D. Mangalaraj, Y. Masuda, K. Senthil, K. Yong: J Phys. D: Appl. Phys. Vol. 43 (2010), p 015501/1-015501/9

### Materials, Mechanical Engineering and Manufacture

10.4028/www.scientific.net/AMM.268-270

## Preparation and Characterization of Fe<sup>3+</sup>-Doped TiO<sub>2</sub>/Diatomite Composite

10.4028/www.scientific.net/AMM.268-270.15

## **DOI References**

[1] K. Honda, A. Fujishima: Nature Vol. 238 (1972), pp.37-38. http://dx.doi.org/10.1038/238037a0 [2] W. Zhang, L.D. Zou, L.Z. Wang: Appl. Catal. A: Gen. Vol. 371 (2009), pp.1-9. http://dx.doi.org/10.1016/j.apcata.2009.09.038 [3] Y.X. Jia, W. Han, G.X. Xiong, W.S. Yang: J. Colloid Interf. Sci. Vol. 323 (2008), pp.326-331. http://dx.doi.org/10.1016/j.jcis.2008.04.020 [4] H.K. Shon S. Vigneswaran, I. El Saliby, Y. Okour, In S. Kim, J. Cho, H.J. Park, J.B. Kim and J. -H. Kim: Desalin. Water Treat. Vol. 15 (2010), pp.214-221. http://dx.doi.org/10.5004/dwt.2010.1847 [5] Z. Zhang, C. Wang, R. Zakaria, J.Y. Ying: J. Phys. Chem. B Vol. 102 (1998), pp.10871-10878. http://dx.doi.org/10.1021/jp982948+ [6] J. X. Lin, S. L. Zhan, M. H. Fang, X. Q. Qian: J. Porous Mater. Vol. 14 (2007), pp.449-455. http://dx.doi.org/10.1007/s10934-006-9039-5 [7] S. Bharathi, D. Nataraj, D. Mangalaraj, Y. Masuda, K. Senthil, K. Yong: J Phys. D: Appl. Phys. Vol. 43 (2010), p.015501/1-015501/9. http://dx.doi.org/10.1088/0022-3727/43/1/015501